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Abstract

In our submission to the NVIDIA AI City Challenge, we

address vehicle re-identification and vehicle multi-camera

tracking. Our approach to vehicle re-identification is based

on the extraction of visual features and aggregation of these

features in the temporal domain to obtain a single feature

descriptor for the whole observed track. For multi-camera

tracking, we proposed a method for matching vehicles by

the position of trajectory points in real-world space (lin-

ear coordinate system). Furthermore, we use CNN for the

vehicle re-identification task to filter out false matches gen-

erated by proposed positional matching method for better

results.

1. Introduction

In this submission, we address the tasks of vehicle multi-

camera tracking and re-identification of the NVIDIA AI

City Challenge 2019 (i.e. Track1 and Track2).

Our approach to visual vehicle re-identification is based

on extraction of feature vectors using a convolutional neu-

ral network and aggregation of extracted features vectors

from observed vehicles in temporal domain. We use stan-

dard CNNs [7, 27, 9] trained for the identification task and

we employ an LFTD network [25] for feature aggregation.

For the multi-camera tracking part, we propose a method

for matching points from vehicle trajectories in real-world

linear coordinate system space. This approach is based on

projection of 2D image points into the real-world linear

space [30] and matching of vehicles in this linear space with

respect to time and space constraints. Furthermore, this ap-

proach can be also combined with extraction of feature vec-

tors for all observed and pre-matched tracks.

To put our approach to a larger context, we include

a brief overview of the state of the art in vehicle re-

identification. After that, we describe the used methods for

both vehicle re-id and multi-camera tracking in detail.

1.1. Vehicle Re­Identification

Formerly, the methods for vehicle re-identification were

based on automatic license plate recognition [5, 11, 31], us-

ing hand-crafted visual features (PCA-SIFT, HOG descrip-

tors, color histograms, etc.) extracted from vehicle images

[1, 6, 38] or just information about date, time, color, speed

and vehicles’ dimensions [6].

Recently, deep features learned by CNNs [16, 20, 29,

33, 40] are being used for this task. Liu et al. [17] com-

bine the hand-crafted and deep features. Improvements

were also made by exploiting spatio-temporal [17, 29] or

visual-spatio-temporal [20] properties. Some of them ben-

efit from Siamese CNNs for license plate verification [17]

or vehicle image similarities [20]. Moreover, introduction

of triplet loss [40, 14] or Coupled Cluster Loss (CCL) [16]

led to accuracy improvements and faster convergence. Re-

cently, Yan et al. [33] propose to use Generalized Pairwise

Ranking or Multi-Grain based List Ranking for retrieval of

similar vehicles, which performs even better than CCL.

Few person re-identification papers also proposed to

use the triplet loss [4, 8] or quadruplet loss [3] instead

of training the network in a Siamese setting. There were

also attempts to learn a metric for the re-identification like

KISSME [13], XQDA [15], You et al. [37] learn Maha-

lanobis distance on LBP and HOG3D features, and finally

Shi et al. [21] learn Mahalanobis distance in an end-to-end

manner.

On the other hand, a group of methods exists which pro-

pose to use feature pooling (aggregation) in temporal do-

main for re-identification task. Such pooling is usually used

in the context of person re-identification (with the exception

of Yang et al. [35] who used it for video face recognition).

The methods are often trained by using a Siamese network

[18, 39, 34, 2, 32, 35] with contrastive loss and optionally

the identification loss as well. Similarly, in our paper [25],

we propose a method for feature aggregation in temporal

domain of multiple observations of a vehicle in one track.
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Figure 1. Video screenshots from one recording session with a ve-

hicle with the same identity. Image source: [25].

Figure 2. Examples of queries, positive, and negative samples. The

negatives are sorted by difficulty from left to right (hard to easy)

based on distances obtained from our re-identification feature vec-

tors. It should be noted that the hardest negative sample has usu-

ally subtle differences (e.g. missing a small spoiler in the first row).

Image source: [25].

1.2. Vehicle Re­Identification Datasets

Comprehensive datasets of vehicles for fine-grained ve-

hicle recognition are available [12, 36, 23] for more than

5 years now. However, when it comes to vehicle re-

identification the available datasets are limited in some

ways. Liu et al. [17] constructed a rather small VeRi-776

dataset containing 50,000 images of 776 vehicles. Liu et al.

[16] collected VehicleID dataset containing 26,267 vehicles

in 220k images taken from a frontal/rear viewpoint above

road. Recently, Yan et al. [33] published two datasets VD1

and VD2 for vehicle re-identification and fine-grained clas-

sification with over 220k of vehicles in total, with make,

model, and year annotation. However, both datasets are lim-

ited to frontal viewpoints only.

Recently, we collected dataset CarsReId74k [25],

which contains ≈74k of vehicle tracks from various view-

points with precise ground truth identity acquired from a

zoomed-in camera by license plate recognition.

2. Used Approach

In our submission to the NVIDIA AI City Challenge

2019, we focused on vehicle re-identification (Track 2) and

vehicle multi-camera tracking (Track 1). In the following

text, we describe our approach to both of these tasks.

2.1. Training Data for Vehicle Re­Identification

Both tasks contain vehicles observed from various view-

points. It is necessary to acquire a similar dataset for pre-

training of the identification and also re-identification net-

works. We used our dataset CarsReId74k [25] which con-

tains 17,681 unique vehicles, 73,976 observed tracks, and

292,226 positive pairs. For examples of positive and nega-

tive pairs, see Figure 2.

The dataset was collected using 8 cameras recording at

the same time. Four cameras always observed the same di-

rection of traffic at one location from different viewpoints

(left, center, right), and one camera was zoomed in and it

was used for license plate detection and recognition by our

recent method [24]. The videos at one location were ap-

proximately synchronized and the recognized license plates

were assigned to the detected vehicles from other cameras,

producing the identities for all the vehicles. See Figure 1

for examples of videos from one recording session.

2.2. Vehicle Re­Identification

Following the methodology from our previous paper

[25], we first fine-tuned the CNN on vehicle identification

task. We used ResNet-50 [7] and InceptionResNetV2 [26]

with 2D detection/cropped images only and the input im-

age size was 331 × 331. The fine-tuning was done with

Adam [10] optimizer, learning rate 1e-4 and cross-entropy

loss. We were not able to use our previously proposed mod-

ification using “unpacked” version of vehicle images [23]

which is based on construction of 3D bounding boxes as

the input of the CNN due to limitations of viewpoints and

already cropped images in Track2.

On the identification features we trained LFTD net-

work [25] to aggregate the features in temporal domain as

there are multiple observations for the vehicle as they pass

in front of the cameras. The LFTD network contains one

fully connected layer with 1,024 output features and tanh
non-linearity. Furthermore, the network contains feature

weighting mechanism which weights different elements of

the feature vectors by different weights. The network is

trained as a Siamese network.

It is possible to use a different distance function during

LFTD network training. We used Weighted Euclidean dis-

tance which is expressed as

dWE(u,v) =

√

√

√

√

D
∑

i=1

wi(ui − vi)2, (1)

where u, v are feature vectors and w = [w1, w2, . . . , wD]
are learned weights.

We evaluated different variants of backbone networks to-

gether with the influence of using image modifiers [22, 23]

and pre-training the networks on different datasets. Com-

plete results of our experiments are depicted in Table 3.
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2.2.1 Vehicle Re-Id Design Changes

Results of our submissions from evaluation server showed

unbalanced values compared to our evaluation (see Table 3).

This led to designed changes in our methodology proposed

above. Inspired by previous works [14, 28], we tried to re-

place our feature extractor by a much smaller CNN Mo-

bileNet [9] with feature vector dimensionality reduced to

128 dimensions. The second change was in replacing cross-

entropy loss with triplet loss combined with semi-hard

batch sampling [19]. The rest of our design remained the

same. We tried multiple variants of image modifiers and

pooling methods. The results can be found in Section 3.1.

2.3. Multi­Camera Tracking

Unlike the vehicle re-identification task, the multi-

camera tracking task does not have to be solved by visual

comparison of detected vehicles only. The problem can be

solved even using positional matching with knowledge of

GPS coordinates of cameras, known distances and time syn-

chronization between them, and their calibrations. In this

case, matching is based on projection of the 2D point of

vehicle trajectory from the image space into the world coor-

dinate space (linear system in our case). These projections

from multiple cameras can be matched with each other for

every time step in order to obtain matching between tracks

across multiple cameras.

It should be noted that the approach described below as-

sumes that for each camera within the session, an overlap

exists in the view area of the camera with at least one other

camera in the same session. This condition is satisfied for

almost all cameras in test sessions, as can be seen in Fig-

ure 7. In other case, vehicles from camera without any

overlap cannot be matched with the rest of the cameras and

the matching procedure had to be modified. However, with

knowledge of time synchronization and distances between

the cameras, this modification is straightforward.

2.3.1 Vehicle Trajectory Estimation

Positional matching counts on estimation of trajectory

points of each observed vehicle. The selection of a point

from the vehicle detection may influence the precision of

point localization in the world space. One solution is to

construct the 3D bounding box [22, 23] around the vehicle

and select the middle point of the vehicle base laying on the

ground plane. However, this 3D bounding box construction

is computationally expensive as it relies on the silhouette of

the vehicle. We use middle point of 2D detections’ bottom-

line provided instead, as this point performs the best from

available data.

2.3.2 Transformation from Image to World Coordi-

nate System

The transformation process assumes that the calibration pa-

rameters for each camera are known. We used camera cali-

bration provided with the dataset which was in the form of a

homography matrix describing the transformation from the

image plane to GPS coordinates in DD (Decimal degrees)

format. The transformation between coordinate systems is

a straightforward operation made only by matrix multipli-

cation — homography matrix H multiplied by GPS coor-

dinates in homogeneous format to transform from GPS to

image plane (i.e. inverted homography matrix multiplied

by image point in homogeneous format to transform im-

age plane point to GPS coordinates). Two cameras in the

dataset (c005 and c035) are fisheye cameras and thus com-

pensation for the distortion of the point is necessary before

transformation to GPS coordinate systems.

Projection of GPS to Linear System Since GPS coor-

dinates are known in the DD format and not as positions

on the flat plane, the distances and positions do not cor-

respond precisely to the real world because of the curva-

ture of the Earth. Although distances in the DD format

can be computed by Haversine formula, they can poten-

tially suffer by some inaccuracies, and thus transformation

to the linear space was done. We used transformation from

EPSG:4326 to EPSG:26975 (corresponds to North Iowa

where the dataset was collected).

Camera View Area Estimation A part of our solution is

automatic detection of camera view area (polygon covering

part of real world, where objects can be seen by a specific

camera). For each of the observed vehicles, the two bottom

corners of the vehicle’s bounding box are transformed to the

linear space. Convex hull of the points is used as a polygon

covering camera’s view area. An example of the points used

during the detection of a camera’s viewpoint together with

the corresponding linear space is depicted in Figure 3. Ex-

amples of localized viewpoints for a part of all cameras in a

session can be seen in Figure 7. Our experiments show that

it is convenient not to use all detections, but to limit these

detections in some way — detections must be larger than

1000 pixels (in area) and all detections should be no further

than 300 meters from camera in the linear space.

2.3.3 Multi-Camera Tracks Positional Matching

Positional matching between vehicle tracks observed by

multiple cameras at one session is based on comparing mu-

tual positions of individual trajectory points from multiple

cameras in the real-world linear coordinate system in each

time step. Trajectory points from each camera in a session
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Figure 3. left: Detections’ bottom points used for localization of camera’s view area. right: Corresponding points transformed to the linear

space (viewpoint selected as convex hull of these points).

Figure 4. Visualization of the positional matching method. Red

and green tracks corresponds to same vehicle observed by multi-

ple cameras. Blue track represents another track of another vehi-

cle. Positional matching iteratively determines if points from one

trajectory corresponds to points from another trajectories by con-

structing a circle with radius R in each time-step t and matches are

accumulated to the matching matrix. This matrix contains a score

for each possible combination of camera-track pairs.

c006

c007

c008 c009

c006

c007

c008

c009

Figure 5. Matching matrix for S02. Each block size differs based

on a count of tracks detected in single cameras.

are sorted by the time of their observation (time steps). For

each time step and each trajectory point observed by one

camera, we construct a circle in the linear space with ra-

dius R and we are looking for trajectory points from other

cameras in the session which are contained inside the con-

structed circle (for better understanding, please see Fig-

ure 4). These pairwise camera–track matches are accumu-

c006_001

c006_095

c007_001 c007_103c007_051

c006_050

Figure 6. Matrix corresponding to sub-block c006-c007 from Fig-

ure 5. Each cell contains the count of matches between the track

in each row and track in each column.

lated in a matching matrix M . This matrix contains all pos-

sible matches from each track in one camera to all tracks in

the other cameras. An example of the matching matrix can

be seen in Figure 5.

The matching matrix is split in pairwise camera blocks

(see Figure 6). In each row of these blocks, we are look-

ing for maximal accumulated values in other camera blocks

separately using Linear Sum Assingment solver. These

maximal values correspond to the best matching tracks be-

tween all cameras in the session. Best matches are further

processed and joined into bigger groups if some element

of pairs, triplets, quadruplets,... is missing in the other set

which has at least one shared element.

Even visual features can be employed in the proposed

method for solving multi-camera tracking problem. We are

able to extract features (by using the same convolutional

neural network with pooling as described in Section 2.2)

from vehicle tracks given by camera-track indices of the

matching matrix and to construct a pairwise distance ma-

trix with the same shape as the matching matrix. This dis-

tance matrix is then used for weighting of elements in the

matching matrix.
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Figure 7. Localized viewpoints for part of all cameras in S04 and S05.

Figure 8. Example result of our positional matching method with projection of trajectories points into linear coordinate system. Arrows

depict transformed points from image space to real-world space in specific time-step (displayed camera frame).

3. Experiments

This section describes the experiments done while eval-

uating both challenge tracks.

3.1. Evaluation of Vehicle Re­Identification

We employed our own version of evaluation on the

training data in same manner as official evaluation is per-

formed. We extract 1,000 images from training data which

were used as our query images. This query set was used for

evaluation of networks performance on the training set.

Comparison of different variants of our trained networks

and big differences between the performance on the training

and the testing data can be seen in the Table 3. Our original

network design (CNN trained for the identification task with

the cross-entropy loss and addition CNN for time-pooling –
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Variant Sess IDF1 IDP IDR Prec Rec

R=5m 02 0.0640 0.1240 0.0431 0.1560 0.0543

R=5m + feats 02 0.0664 0.1315 0.0444 0.1608 0.0543

R=5m 02,05 0.0480 0.0264 0.2623 0.0510 0.5064

R=10m 02,05 0.0340 0.0181 0.2865 0.0365 0.5792

R=10m + feats 02,05 0.0358 0.0190 0.3015 0.0365 0.5792

Table 1. Results for different variants of positional matching from

AIC evaluation server. R represents different radius of circle for

positional matching. Feats represent using of visual features ex-

tracted from tracks.

Rank Team ID Team Name IDF Score

1 21 UWIPL 0.7059

2 49 DDashcam 0.6865

3 12 Traffic Brain 0.6653

4 53 Desire 0.6644

5 97 ANU AI city tracking and Re-ID team 0.6519

6 59 Zero One 0.5987

7 36 DGRC 0.4924

8 107 IIAI-VOS 0.4504

9 104 Owlish 0.3369

10 52 CUNY-NPU 0.2850

11 48 BUPT-MCPRL 0.2846

12 115 KITMCT 0.2272

13 108 FirstBird 0.2183

14 7 iter1004 0.2149

15 60 i-TRACK 0.1752

16 87 DukBaeGi 0.1710

17 79 Alpha 0.1634

18 64 GRAPH@FIT 0.0664

19 43 VPUteam 0.0566

20 128 YXWM 0.0544

21 68 BUPT MCPRL MTMCT 0.0473

22 45 Insight DCU 0.0326

Table 2. Final ranking for multi-camera tracking part (Track 1) of

NVIDIA AI City Challenge 2019.

LFTD) was tested with a different combination of training

data for both these tasks (feature extraction, time pooling).

We trained our network the CarsReId74k [25] or we pre-

trained the network on this dataset and we fine-tune on AIC-

ReID training data after that.

The results on our evaluation set were promising. How-

ever, after evaluating on the testing set, the results were

very unsatisfactory. A big performance drop can be seen

when training and testing evaluation is compared. This is

probably caused by the size of the AIC-ReID dataset as the

number vehicles and their images included in the dataset is

rather small.

We tried to replicate at least the baseline results provided

by the authors of the challenge [28]. We trained MobileNet

with triplet loss function for feature embedding (128 dimen-

sions) with semi-hard batch sampling. Again, results based

on our evaluation procedure were promising, contrary to the

final obtained results. However, the performance on the

testing set is better. The final rank for this part (Track 1)

can be found in the Table 4.

Training setup

A feature extractor for the CarsReId74k dataset was trained

with LR 0.0001, Adam optimizer, batch size 16 for 50

epochs, while fine-tuning on the AIC-ReID dataset was

done for 20 epochs with the same hyperparameters. We

use image modifications (IM) during training as proposed

by Sochor et al. [22, 23] — specifically we use alterHSV

and imageDrop.

In the case of MobileNet with triplet loss trained for

feature embedding, batch size 80 (4 samples for 20 vehi-

cle identities) was used. The network was trained with LR

0.0003 with Adam optimizer for 150 epochs.

Feature aggregation network (LFTD) was trained for

weighted euclidean distance (WE) with LR 10−4.4 us-

ing Adam optimizer, contrastive loss with margin 2.0, 30

rounds of hard negative mining and final features length

1024.

3.2. Evaluation of Multi­Camera Tracking

We tried to compute positional matching for different cir-

cle radius R = {5, 10} with and without visual features.

Generated files with results contained ≈ 3 millions of rows

and the obtained results are unsatisfactory. This was prob-

ably caused by joining obtained matching set to bigger sets

as this results into corruption of time constrains. This led

to selection of large number of false positive tracks which

was confirmed by evaluation of session S02 only with bet-

ter IDF1 score. Unfortunately, due to time reasons we were

not able to process more experiments and our method still

needs more evaluation. All evaluated variants can be found

in Table 1. The final rank for this part (Track1) can be found

in Table 2.

4. Conclusions

We participated in two tasks of the NVIDIA AI City

Challenge 2019: the vehicle re-identification task and

multi-camera tracking task. Our solution for vehicle re-

identification is based on convolutional neural network and

time pooling of the feature vectors extracted from the ob-

served vehicles. For the multi-camera tracking part, we

propose a method for matching of vehicle trajectory points

in the real-world linear coordinate system space. This ap-

proach can be also combined with extraction of feature vec-

tors for all observed and pre-matched tracks.
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Train evaluation Test evaluation (server)

Net Loss Pooling Mods Ext. Data Pool. Data mAP H@1 H@5 H@10 H@20 mAP H@1 H@5 H@10 H@20

RN-50 Xent avg - CR - 0.306 0.213 0.377 0.484 0.641 - - - - -

RN-50 Xent LFTD - CR CR 0.331 0.238 0.403 0.522 0.667 - - - - -

RN-50 Xent LFTD - CR CR+AIC 0.786 0.711 0.881 0.933 0.97 - - - - -

IRN-v2 Xent avg - CR - 0.357 0.256 0.447 0.562 0.699 - - - - -

IRN-v2 Xent LFTD - CR CR 0.375 0.273 0.468 0.592 0.73 - - - - -

IRN-v2 Xent LFTD - CR CR+AIC 0.766 0.678 0.875 0.933 0.969 - - - - -

RN-50 Xent avg IM CR - 0.297 0.209 0.361 0.472 0.623 - - - - -

RN-50 Xent LFTD IM CR CR 0.311 0.219 0.381 0.492 0.645 - - - - -

RN-50 Xent LFTD IM CR CR+AIC 0.789 0.715 0.88 0.928 0.965 - - - - -

IRN-v2 Xent avg IM CR - 0.346 0.251 0.423 0.543 0.69 - - - - -

IRN-v2 Xent LFTD IM CR CR 0.362 0.259 0.451 0.577 0.723 0.0568 0.1141 0.1141 0.1179 0.1331

IRN-v2 Xent LFTD IM CR CR+AIC 0.766 0.683 0.87 0.925 0.968 - - - - -

RN-50 Xent avg - CR+AIC - 0.844 0.768 0.942 0.972 0.99 - - - - -

RN-50 Xent LFTD - CR+AIC CR 0.741 0.655 0.85 0.91 0.956 - - - - -

RN-50 Xent LFTD - CR+AIC CR+AIC 0.983 0.976 0.993 0.996 0.998 - - - - -

IRN-v2 Xent avg - CR+AIC - 0.988 0.981 0.997 0.999 1 - - - - -

IRN-v2 Xent LFTD - CR+AIC CR 0.978 0.968 0.99 0.994 0.996 0.2329 0.3536 0.3555 0.3650 0.4068

IRN-v2 Xent LFTD - CR+AIC CR+AIC 0.992 0.989 0.995 0.995 0.996 0.2420 0.3498 0.3508 0.3574 0.3926

RN-50 Xent avg IM CR+AIC - 0.829 0.752 0.928 0.965 0.988 - - - - -

RN-50 Xent LFTD IM CR+AIC CR 0.726 0.638 0.833 0.896 0.948 0.1428 0.2861 0.2871 0.2928 0.3137

RN-50 Xent LFTD IM CR+AIC CR+AIC 0.982 0.972 0.994 0.996 0.997 - - - - -

IRN-v2 Xent avg IM CR+AIC - 0.986 0.978 0.997 0.999 1 - - - - -

IRN-v2 Xent LFTD IM CR+AIC CR 0.976 0.963 0.992 0.997 0.998 0.2311 0.3622 0.3631 0.3641 0.3992

IRN-v2 Xent LFTD IM CR+AIC CR+AIC 0.991 0.986 0.996 0.999 1 0.2449 0.3707 0.3717 0.3755 0.4240

MobNet Tri avg - AIC - 0.973 0.953 0.997 0.999 0.999 0.2883 0.3916 0.3916 0.4002 0.4496

MobNet Tri LFTD - AIC AIC 0.976 0.959 0.995 0.998 1 0.2582 0.3432 0.3451 0.3489 0.3850

MobNet Tri avg IM+Flip AIC - 0.962 0.934 0.995 0.998 0.999 - - - - -

MobNet Tri avg Flip AIC - 0.989 0.978 1 1 1 0.3157 0.4221 0.4221 0.4278 0.4270

Table 3. Results for different variants of CNN feature extractors trained using different training setups (dataset used, network design, time

pooling, data augmentation) and big gaps in our evaluation on training data and official evaluation.

Net: RN-50 – ResNet50, IRN – InceptionResNet, MobNet – MobileNet.

Loss: Xent – cross-entropy loss, Tri – Triplet loss.

Pooling: avg – average time-pooling, LFTD – our time-pooling method [25].

Mods (data augmentation used while training): IM – Image modifications [22, 23], Flip – Horizontal flip of image.

Extractor/pooling data (data used for training): CR – CarsReId74k, AIC data, CR+AIC combination of them.

Rank Team ID Team Name mAP Score Rank Team ID Team Name mAP Score

1 59 Zero One 0.8554 43 80 IFP 0.3266
2 21 UWIPL 0.7917 44 1 SJSU Anastasiu 0.3242
3 97 ANU AI city tracking and Re-ID team 0.7589 45 64 GRAPH@FIT 0.3157
4 4 expensiveGPUs 0.7560 46 104 Owlish 0.3090
5 12 Traffic Brain 0.7302 47 33 HRI-SH 0.3081
6 53 Desire 0.6793 48 50 AHUer 0.3047
7 131 XINGZHI 0.6091 49 76 GOGOGO 0.3039
8 5 UMD RC 0.6078 50 79 Alpha 0.2965
9 78 MVM 0.5862 51 63 QMUL 0.2928

10 127 flyZJ 0.5827 52 6 UWACS 0.2912
11 92 APTX 0.5725 53 108 FirstBird 0.2867
12 154 XJTU-SMILES Lab 0.5693 54 46 SkyRoads 0.2766
13 27 INRIA STARS 0.5344 55 87 DukBaeGi 0.2763
14 107 IIAI-VOS 0.5229 56 120 YXX 0.2713
15 132 AlphaVehicle 0.5096 57 117 AI Pioneers 0.2693
16 114 Casia&Sg.panasonic&Bjtu 0.5040 58 145 Luo Jia Team 0.2599
17 23 KFC 0.5028 59 68 BUPT MCPRL MTMCT 0.2531
18 24 Avengers5 0.4998 60 43 VPUteam 0.2505
19 40 AI Bandits 0.4631 61 57 UTF-Puma 0.2481
20 48 BUPT-MCPRL 0.4610 62 55 reiddoneright 0.2451
21 7 iter1004 0.4406 63 18 Team Argus 0.2347
22 37 VCA 0.4195 64 62 CQUPT EINI 0.2345
23 52 CUNY-NPU 0.4096 65 91 SJK 0.2228
24 14 CVHCI-KIT 0.4014 66 85 Bohemian Rhapsody 0.2184
25 113 HCMUS 0.4008 67 49 DDashcam 0.2176
26 70 helloketty 0.3960 68 25 GIST 0.2110
27 54 zhengge 0.3922 69 159 Walrus 0.2063
28 36 DGRC 0.3887 70 146 NCTUAI 0.2018
29 35 VD-blue 0.3814 71 163 TeamFellows 0.1748
30 41 SYSUITS 0.3769 72 139 Alpha TSZ 0.1627
31 30 CheeseEgg 0.3741 73 125 BDTitan 0.1598
32 17 CSAI 0.3723 74 28 228Office 0.1583
33 51 ZJU 0.3689 75 15 ReId-this 0.1559
34 22 singlerace 0.3675 76 116 Conduent Labs India 0.0852
35 89 MMVG-AlibabaAIC-INF 0.3566 77 44 BUPT-CSD-Vision 0.0782
36 26 SYSU-ISENET 0.3503 78 58 Ann Arbor AI Amateurs 0.0340
37 124 BUPTCP 0.3496 79 45 Insight DCU 0.0322
38 96 SDU&Oeasy 0.3430 80 60 i-TRACK 0.0146
39 72 VehicleJian 0.3378 81 19 UCF reid 0.0025
40 20 TJU0432 0.3339 82 128 Robint 0.0022
41 29 NCTU-NOL 0.3325 83 13 KAIST MSC 0.0004
42 47 ZJU ReID 0.3317 84 133 AIIT-Jack 0.0003

Table 4. Final ranking for the re-identification part (Track 2) of NVIDIA AI City Challenge 2019.
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